The FLUKA Code: An Accurate Simulation Tool for Particle Therapy
نویسندگان
چکیده
Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features.
منابع مشابه
Evaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code
Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide. Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...
متن کاملEffects of the modulator and range compensator blades on Bragg curve and calculating the secondary particle dose in proton-therapy of thymus gland cancer using MCNPX, FLUKA and GEANT4 codes
The thymus gland is an endocrine gland that plays an important role in the body’s immunity. Thymus gland cancer happens very rarely and one treatment way is radiation therapy. Due to the location of this gland and its proximity to the sensitive organs, radiation therapy of thymus gland cancer will bring the risk of side effects. In this paper, a Mird phantom is simulated and a modulator and ran...
متن کاملEstimation of Photon Specific Absorbed Fractions in Digimouse Voxel Phantom using Monte Carlo Simulation Code FLUKA
Background: Most preclinical studies are carried out on mice. For internal dose assessment of a mouse, specific absorbed fraction (SAF) values play an important role. In most studies, SAF values are estimated using older standard human organ compositions and values for limited source target pairs.Objective: SAF values for monoenergetic photons of energies 15, 50, 100, 500, 1000 and 4000 keV...
متن کاملMonte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays Using the FLUKA Code
In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...
متن کاملEvaluation of Lung Density and Its Dosimetric Impact on Lung Cancer Radiotherapy: A Simulation Study
Background: The dosimetric parameters required in lung cancer radiation therapy are taken from a homogeneous water phantom; however, during treatment, the expected results are being affected because of its inhomogeneity. Therefore, it becomes necessary to quantify these deviations.Objective: The present study has been undertaken to find out inter- and intra- lung density variations and its dosi...
متن کامل